Search results for "thermal [correlation function]"
showing 10 items of 1923 documents
Slow-Mode Magnetoacoustic Waves in Coronal Loops
2021
Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements of hot emission lines, thus also often called "SUMER" oscillations. They were mainly interpreted as global (or fundamental mode) standing slow magnetoacoustic waves. In addition, increasing evidence has suggested that the decaying harmonic type of pulsations detected in light curves of solar and stellar flares are likely caused by standing slow-mode waves. The study of slow magnetoacoustic waves in coronal loops has become a topic of particular…
Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica
2014
The equilibrium composition of volcanic gases with their magma is often overprinted by interaction with a shallow hydrothermal system. Identifying the magmatic signature of volcanic gases is critical to relate their composition to properties of the magma (temperature, fO2, gas-melt segregation depth). We report measurements of the chemical composition and flux of the major gas species emitted from Turrialba Volcano during March 2013. Measurements were made of two vents in the summit region, one of which opened in 2010 and the other in 2012. We determined an average SO2 flux of 5.2 ± 1.9 kg s-1 using scanning ultraviolet spectroscopy, and molar proportions of H2O, CO2, SO2, HCl, CO and H2 ga…
First study of the heat and gas budget for Sirung volcano, Indonesia
2017
International audience; With at least four eruptions over the last 20 years, Sirung is currently one of the more active volcanoes in Indonesia. However, due to its remoteness, very little is known about the volcano and its hyperacid crater lake. We report here on the first measurements of gas and heat emissions from the volcano. Notable is the substantial heat loss from the crater lake surface, amounting to 220 MW. In addition, 17 Gg of SO2, representing 0.8% of Indonesian volcanic SO2 contribution into the atmosphere, 11 Gg of H2S, 17 Gg of CO2, and 550 Gg of H2O are discharged into the atmosphere from the volcano annually. The volatiles degassed from Sirung magmas are subjected to hydroth…
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
2019
The Interface Region Imaging Spectrograph (IRIS) has observed bright spots at the transition region footpoints associated with heating in the overlying loops, as observed by coronal imagers. Some of these brightenings show significant blueshifts in the Si iv line at 1402.77 A (logT[K] = 4.9). Such blueshifts cannot be reproduced by coronal loop models assuming heating by thermal conduction only, but are consistent with electron beam heating, highlighting for the first time the possible importance of non-thermal electrons in the heating of non-flaring active regions. Here we report on the coronal counterparts of these brightenings observed in the hot channels of the Atmospheric Imaging Assem…
Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating
2015
cited By 23; The underlying physics of intermediate-depth earthquakes have been an enigmatic topic; several studies support either thermal runaway or dehydration reactions as viable mechanisms for their generation. Here we present fully coupled thermomechanical models that investigate the impact of grain size evolution and energy feedbacks on shear zone and pseudotachylite formation. Our results indicate that grain size reduction weakens the rock prior to thermal runaway and significantly decreases the critical stress needed for thermal runaway, making it more likely to result in intermediate-depth earthquakes at shallower depths. Furthermore, grain size is reduced in and around the shear z…
Volcanic plume and bomb field masses from thermal infrared camera imagery
2013
International audience; Masses erupted during normal explosions at Stromboli volcano (Italy) are notoriously difficult to measure. We present a method that uses thermal infrared video for cooling bomb fields to obtain the total power emitted by all hot particles emitted during an explosion. A given mass of magma (M) will emit a finite amount of thermal power, defined by M cp(Te−T0), cp and Te being magma specific heat capacity and temperature, and T0 being ambient temperature. We use this relation to convert the total power emitted by the bomb field to the mass required to generate that power. To do this we extract power flux curves for the field and integrate this through time to obtain to…
Evaluation of different methods to retrieve the hemispherical downwelling irradiance in the thermal infrared region for field measurements
2013
International audience; The thermal infrared hemispherical downwelling irradiance (HDI) emitted by the atmosphere and surrounding elements contributes through reflection to the signal measured over an observed surface by remote sensing. This irradiance must be estimated in order to obtain accurate values of land-surface temperature (LST). There are some fast methods to measure the HDI with a single measurement pointing to the sky at a specified viewing direction, but these methods require completely cloud-free or cloudy skies, and they do not account for the radiative contribution of surrounding elements. Another method is the use of a diffuse reflectance panel (usually, a rough gold-coated…
Intra-skeletal variability in trace elemental content of Precolumbian Chupicuaro human bones: the record of post-mortem alteration and a tool for pal…
2011
14 pages; International audience; This study applies an intra-skeletal sampling strategy to examine post-mortem alteration of archaeological human bone from west Mexico, and to reconstruct ancient diet. Human bone from the Chupicuaro culture (Mexico, Preclassic period) constitutes an ideal material with which to examine subsistence strategies because the specific hydrothermal environment in which the population lived would have provided certain food components (hydrothermal waters and carbonates) with distinct signature in Ca, Mg, F, Li, Sr, Mn, V and U values. Four to ten samples were taken from the long bones of six skeletons. Bone trace element content (Ca, P, F, Mn, Mg, Na, Li, V, Zn, R…
Hydrothermalism in the Tyrrhenian Sea: Inorganic and microbial sulfur cycling as revealed by geochemical and multiple sulfur isotope data
2011
15 pages; International audience; The Palinuro volcanic complex and the Panarea hydrothermal field, both located in the Tyrrhenian Sea (Italy), are associated with island arc magmatism and characterized by polymetallic sulfide mineralization. Dissolved sulfide concentrations, pH, and Eh measured in porewaters at both sites reveal a variable hydrothermal influence on porewater chemistry. Multiple sulfur isotopic measurements for disseminated sulfides (CRS: chromium reducible sulfur) extracted from sediments at Palinuro yielded a broad range in δ34S range between −29.8 and +10.2‰ and Δ33S values between+0.015 and+0.134‰. In contrast, sediments at Panarea exhibit a much smaller range in δ34SCR…
Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology
2020
In the last decades, the evolution of molecular diagnosis methods has generated different advanced tools, like loop-mediated isothermal amplification (LAMP). Currently, it is a well-established technique, applied in different fields, such as the medicine, agriculture, and food industries, owing to its simplicity, specificity, rapidity, and low-cost efforts. LAMP is a nucleic acid amplification under isothermal conditions, which is highly compatible with point-of-care (POC) analysis and has the potential to improve the diagnosis in plant protection. The great advantages of LAMP have led to several upgrades in order to implement the technique. In this review, the authors provide an overview r…